Genetic variation at \textit{CRI} increases risk of cerebral amyloid angiopathy

\textit{Neurology} 2012;78;334; Published online before print January 18, 2012;
DOI 10.1212/WNL.0b013e3182452b40

This information is current as of November 1, 2012

The online version of this article, along with updated information and services, is located on the World Wide Web at:

http://www.neurology.org/content/78/5/334.full.html
Genetic variation at CR1 increases risk of cerebral amyloid angiopathy

ABSTRACT

Objective: Accumulated evidence suggests that a variant within the CR1 gene (single nucleotide polymorphism rs6656401), known to increase risk for Alzheimer disease (AD), influences β-amyloid (Aβ) deposition in brain tissue. Given the biologic overlap between AD and cerebral amyloid angiopathy (CAA), a leading cause of intracerebral hemorrhage (ICH) in elderly individuals, we investigated whether rs6656401 increases the risk of CAA-related ICH and influences vascular Aβ deposition.

Methods: We performed a case-control genetic association study of 89 individuals with CAA-related ICH and 280 individuals with ICH unrelated to CAA and compared them with 324 ICH-free control subjects. We also investigated the effect of rs6656401 on risk of recurrent CAA-ICH in a prospective longitudinal cohort of ICH survivors. Finally, association with severity of histopathologic CAA was investigated in 544 autopsy specimens from 2 longitudinal studies of aging.

Results: rs6656401 was associated with CAA-ICH (odds ratio [OR] = 1.61, 95% confidence interval [CI] 1.19–2.17, p = 8.0 × 10⁻⁴) as well as with risk of recurrent CAA-ICH (hazard ratio = 1.35, 95% CI 1.04–1.76, p = 0.024). Genotype at rs6656401 was also associated with severity of CAA pathology at autopsy (OR = 1.34, 95% CI 1.05–1.71, p = 0.009). Adjustment for parenchymal amyloid burden did not cancel this effect, suggesting that, despite the correlation between parenchymal and vascular amyloid pathology, CR1 acts independently on both processes, thus increasing risk of both AD and CAA.

Conclusion: The CR1 variant rs6656401 influences risk and recurrence of CAA-ICH, as well as the severity of vascular amyloid deposition. Neurology® 2012;78:334-341

GLOSSARY

Aβ = β-amyloid; AD = Alzheimer disease; BA = Brodmann area; CAA = cerebral amyloid angiopathy; CAA-ICH = cerebral amyloid angiopathy-related intracerebral hemorrhage; CI = confidence interval; GOCHA = Genetics Of Cerebral Hemorrhage on Anticoagulation; GWAS = genome-wide association studies; HR = hazard ratio; HTN-ICH = hypertension-related intracerebral hemorrhage; ICH = intracerebral hemorrhage; MAP = minor allele frequency; MAP = Rush Memory and Aging Project; OR = odds ratio; PCA = principal component analysis; ROS = Religious Order Study; SNP = single nucleotide polymorphism.

Cerebral amyloid angiopathy (CAA) is characterized by β-amyloid (Aβ) peptide deposition in the walls of arterial vessels of the cerebral cortex and cerebellum. Like the amyloid plaques in Alzheimer disease (AD), vascular amyloid is composed of a proteolytic fragment (Aβ) of the β-amyloid precursor protein. Aβ deposition is responsible for a variety of clinical consequences, including acute intracerebral hemorrhage (ICH). CAA-related ICH accounts for between 15% and 40% of all nontraumatic ICH in elderly individuals and is associated with mortality rates of 30%–50%. From the Center for Human Genetic Research (A.B., L.C., J.R.) and Department of Neurology (A.B., L.C., A.A., K.S., S.M.G., J.R.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (A.B., J.M.S., L.C., P.L.D., J.R.), Broad Institute, Cambridge, MA; Program in Translational NeuroPsychiatric Genomics (J.M.S., P.L.D.), Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA; Department of Neurology (J.M.J.), Jagiellonian University Medical College, Krakow, Poland; Stroke Program (D.L.B.), Department of Neurology, University of Michigan Health System, Ann Arbor, MI; Department of Neurology (S.L.S.), University of Florida College of Medicine, Jacksonville; Department of Neurology (M.S.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Neurology and Public Health Sciences (B.B.W.), University of Virginia Health System, Charlottesville; Department of Neurology (J.F.M.), Mayo Clinic, Jacksonville, FL; and Rush Alzheimer’s Disease Center (J.A.S., D.A.B.), Department of Neurological Sciences, Rush University Medical Center, Chicago IL.

Study funding: Funding information is provided at the end of the article.

Disclosures: Author disclosures are provided at the end of the article.
The biologic overlap between CAA and AD is substantial. CAA is found in up to 40% of individuals with a clinical diagnosis of AD who come to autopsy.11 Furthermore, there appears to be substantial overlap in the genetics of the 2 conditions. Mutations in APP cause both autosomal-dominant AD and autosomal-dominant hereditary CAA-ICH.12,13 In APOE, common polymorphisms influence risk of both sporadic CAA and sporadic AD.12,14

Genome-wide association studies (GWAS) have yielded a host of novel genetic risk factors for sporadic AD.15–17 Of these, single nucleotide polymorphism (SNP) rs6656401 within the CRI gene has been associated with increased Ab deposition in brain specimens.18 We therefore investigated whether this variant also influences risk of clinically symptomatic CAA-ICH, as well as histopathologic severity of CAA. We analyzed SNP data for CAA-ICH case and control subjects from the ongoing Coagulation Of Cerebral Hemorrhage on Anticoagulation (GOCHA) study,14,19 as well as for autopsied individuals enrolled in the Religious Order Study (ROS) and the Rush Memory and Aging Project (MAP).18,20–23

METHODS GOCHA study. Subject recruitment. Subjects were drawn from an ongoing multicenter genetic association study of primary and anticoagulation-related ICH.14,19 In brief, study subjects are consecutive patients aged ≥55 years with ICH admitted to the emergency department of participating institutions (figure 1). Baseline head CT scans were reviewed centrally for determination of ICH location.

Race/ethnicity-, age-, and gender-matched control subjects were individuals enrolled from outpatient clinical services at participating institutions and were confirmed to have no medical history of ICH, AD, or pre-enrollment cognitive impairment through in-person interview and review of medical records.20,21,23

Longitudinal follow-up. All patients with ICH who survived at least 90 days after the index ICH were considered eligible for follow-up longitudinal analysis. Patients and their caregivers were interviewed by telephone at 3 months after ICH, 6 months after ICH, and every 6 months thereafter.20,21 Information collected included medication use, recurrent lobar or nonlobar ICH, and death. If new neurologic symptoms, ischemic stroke, ICH, or hospital admission was reported by the subject or caregiver, the relevant medical records and radiographic images were reviewed by a study investigator blinded to other clinical and genetic data to assess the presence or absence of recurrent ICH. Events qualifying for censoring of subjects’ data included clinically symptomatic ICH confirmed by neuroimaging, death, or follow-up period reaching the predetermined deadline for prospective ascertainment (January 1, 2009).

Data collection and variable definition. Clinical data were recorded at index ICH admission by stroke neurologists as part of routine clinical care. Collected data included information on demographics, previous medical history, Glasgow Coma Scale score, and pre-ICH medication use. All clinical and neuroimaging data were collected by individuals blinded to genotype data.

CAA-related ICH (CAA-ICH) was defined as lobar ICH (selective involvement of cerebral cortex or underlying white matter on admission CT scan) fulfilling the Boston criteria for a diagnosis of definite/probable CAA (i.e., demonstrating CAA pathology or multiple strictly lobar hemorrhagic lesions).7

To provide a negative control cohort for comparison purposes, we also analyzed data from deep hemispheric ICH (involving the basal ganglia, thalamus, or brainstem), typically caused by hypertensive vasculopathy (HTN-ICH). Subjects with cerebellar ICH and mixed location ICH were excluded from the analysis. Inclusion of these subjects (n = 9) in either analysis group did not alter results (data not shown).

ROS and MAP. Subject recruitment. The ROS, started in 1994, enrolled older Catholic priests, nuns, and brothers, aged ≥53 years, from about 40 groups in 12 states.20 Since January 1994, 1,132 participants, of whom 1,001 were non-Hispanic white, completed their baseline evaluation. The follow-up rate of survivors exceeds 90% as does the autopsy rate (481 autopsies of 511 deaths, of whom 457 were non-Hispanic white). Participants were free of known dementia at enrollment.

The MAP, started in 1997, enrolled older men and women (aged ≥55 years) free of known dementia from retirement communities in the Chicagoland area.21 Since October 1997, 1,285 participants, of whom 1,118 were non-Hispanic white, completed their baseline evaluation. The follow-up rate of survivors exceeds 90%, and the autopsy rate exceeds 80% (336 autopsies of 411 deaths, of whom 320 were non-Hispanic white).

Participants in both studies agreed to annual clinical evaluations and signed both an informed consent and an Anatomic Gift Act form, donating their brains to Rush investigators at the time of death. All clinical and pathologic data were collected, and analyses were performed by study personnel blinded to genotype data. Likewise, cutoffs for CAA severity categorization were chosen according to previously published reports, without any knowledge of individuals’ genetic data.20 More detailed descriptions of these studies can be found in previously published literature.18,20–23

Data collection and variable definition. Brain autopsies were performed using standard techniques by investigators blinded to clinical data, as described previously.20,21 In brief, CAA pathology was assessed by light microscopy on 20-μm immunostained sections derived from 5 brain regions, including 4 neocortical regions—midfrontal (Brodman area [BA] 46/9), inferior temporal (BA20), angular gyrus (BA39), and calcarine cortices (BA17)—and 1 mesial temporal region and the hip-
pocampus. CAA was assessed in each region labeled with anti-
Aβ (clone 6F/3-dimensional, M0872, 1:100; DAKO) and
quantified using a 5-point scale (0 through 4), with 0 = none
(no immunohistostaining for CAA), 1 = mild (scattered positivity
in either leptomeningeal or cortical blood vessels), 2 = mod-
erate (strong, circumferential positivity in some but not all
leptomeningeal or cortical blood vessels), 3 = severe (widespread,
strong, circumferential positivity in leptomeningeal and
cortical blood vessels), and 4 = very severe (same as 3, but with
additional changes of positivity emanating from small cortical
vessels into surrounding neuropil [dysphoric change]). All brains
were also examined for pathologic markers of AD.

Because CAA severity was related across regions (all \(p \leq
0.0001 \)), we averaged the 5 regional scores to create an overall
CAA severity score for each subject. Because the vast majority of
subjects had some degree of CAA pathology (84.9%) and to
make analyses easier to interpret, the overall CAA severity score
was converted into a 3-level class variable predictor. We used an
overall severity score of \(>2.5 \) to separate individuals with mild to
moderate from those with moderate to very severe CAA, with
the reference group consisting of persons with none-to-minimal
CAA, defined by a score of \(<0.5 \). Separate, quantitative composite
measures of neuritic and diffuse amyloid plaque pathology
were calculated on the basis of counts from 5 brain regions (hip-
pocampus, entorhinal cortex, midfrontal cortex, middle tempo-
ral cortex, and inferior parietal cortex) using the greatest density
in a 1-mm² area of each region on modified Bielschowsky silver-
stained 6-μm sections, as described previously.24 We standard-
ized the raw counts by dividing each person’s count by the SD
for that particular count and formed summary scores by averag-
ing the standardized scores.

Genotype data. All subjects included in the present study un-
derwent GWAS SNP genotyping using the Illumina 610-Quad

Figure 1 Intracerebral hemorrhage (ICH) cohort sample size and study design

CAA-ICH = probable or definite cerebral amyloid angiopathy-related ICH; HTN-ICH = hypertension-related ICH in the deep brain structures.
array (GOCHA) or Affymetrix GeneChip 6.0 (ROS and MAP). Patients with ICH and control subjects were both genotyped in multiple batches, and each batch included both case and control subjects in an interspersed disposition on the genotyping plates. Batch assignment for ICH case and control subjects was determined randomly, irrespective of ICH phenotype (i.e., CAA-ICH vs non–CAA-ICH). Genotypes were called using BeadStudio software, and calls were confirmed manually for SNPs in the CRI gene region by laboratory personnel blinded to clinical phenotype. The ROS and MAP samples were genotyped on the Affymetrix 6.0 platform in a single run using identical protocols.

Both genome-wide datasets underwent stringent quality control procedures according to a previously published protocol using PLINK version 1.07,14,26 In brief, quality control of genotype data included filters for missingness, heterozygosity, and concordance between genotype-determined and reported gender. SNP quality control included filters for minor allele frequency (MAF), missingness, Hardy-Weinberg equilibrium, and differential missingness by case-control status (figure e-1 on the Neurology® Web site at www.neurology.org). Individual genotypes for rs6656401 were extracted from GWAS data following quality control procedures and were found to be in Hardy-Weinberg equilibrium (p > 0.20) in all 3 datasets (GOCHA, ROS, and MAP). Population structure was assessed by performing principal component analysis (PCA) on a subset of all SNPs selected using previously published criteria.14,26 We assigned genotype-determined ancestry by comparing study subjects and reference populations from HapMap phase 3 data (figure e-2). To control for population stratification, all individuals analyzed were confirmed to cluster with European HapMap samples to be eligible for analysis. Furthermore, principal components 1 and 2 (PC1 and PC2) from PCA analysis were used as covariates in all multivariate models (see below).14,25,26

Statistical methods. Genotype data were analyzed using an additive model, with odds ratio (OR) or hazard ratio (HR) expressing the effect of each copy of the reference allele. To determine the association between rs6656401 and CAA-ICH or HTN-ICH risk, we used logistic regression analyses. Results from different logistic regression models were compared using the Breslow-Day test. To determine the association between rs6656401 and CAA pathology, we used ordinal logistic regression analyses. We determined univariate predictors of ICH recurrence using Kaplan-Meier plots with significance testing by the log-rank test. For individuals with multiple recurrent CAA-ICH during follow-up, data were censored at the time of the first recurrence. To determine the influence of rs6656401 on CAA-ICH recurrence, we used Cox regression analysis. The proportional hazard assumption was tested using graphical checks and Schoenfeld residual-based tests.27 Covariates for all multivariate models included age, sex, PC1 and PC2, number of APOE ε2 and ε4 alleles, and history of hypertension. CAA pathology analyses were further adjusted for AD pathology to exclude confounding due to the known association with amyloid plaque burden.

Power calculations were performed using the Genetic Power Calculator (pngu.mgh.harvard.edu/~purcell/gpc/).28 Adjustment of effect size estimates due to the winner’s curse was achieved using WINNER software (csrg.sph.umich.edu/boehnke/winner/).29 This program modifies (reduces) the observed effect size estimate in genetic association studies based on available statistical power, as determined by sample size and α threshold for significance.

All other association statistical analyses were performed using R software version 2.10.0 (The R Project for Statistical Computing, www.r-project.org). All significance tests were 2-tailed with significance threshold set at α = 0.05.

RESULTS Characteristics of ICH case and control subjects. A total of 554 subjects with ICH presented to GOCHA study centers from 2003 to 2009, were genotyped on a GWAS array, and passed all quality control filters (table 1). Of these, 89 individuals qualified for a diagnosis of CAA-ICH, and 280 individuals were classified as having HTN-ICH (table 1). A total of 324 ICH-free control subjects of European ancestry were available for analysis. In comparison with subjects with HTN-ICH, individuals with CAA-ICH were 1) older, 2) less likely to have a history of pre-ICH hypertension or diabetes, 3) more likely to have had a prior ICH before the index event, 4) more likely to have pre-ICH cognitive impair-

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Characteristic of subjects included in ICH case-control analysis (GOCHA study)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical variables</td>
<td>CAA-ICH (n = 89)b</td>
</tr>
<tr>
<td>Age, y, mean ± SD</td>
<td>75.1 ± 9.4</td>
</tr>
<tr>
<td>Gender, n (% female)</td>
<td>44 (49.4)</td>
</tr>
<tr>
<td>History of hypertension</td>
<td>56 (62.9)</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>19 (21.3)</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>19 (21.3)</td>
</tr>
<tr>
<td>Type 2 diabetes</td>
<td>14 (15.7)</td>
</tr>
<tr>
<td>Prior functional dependence</td>
<td>3 (3.4)</td>
</tr>
<tr>
<td>Prior cognitive impairment</td>
<td>26 (29.2)</td>
</tr>
<tr>
<td>Pre-index ICH</td>
<td>12 (13.5)</td>
</tr>
<tr>
<td>Pre-ICH medication use</td>
<td></td>
</tr>
<tr>
<td>Antiplatlet agents</td>
<td>32 (36.0)</td>
</tr>
<tr>
<td>Statins</td>
<td>26 (29.2)</td>
</tr>
<tr>
<td>Genetic variables</td>
<td></td>
</tr>
<tr>
<td>rs6656401 (A allele, MAF)</td>
<td>0.24</td>
</tr>
<tr>
<td>APOE ε2 (MAF)</td>
<td>0.18</td>
</tr>
<tr>
<td>APOE ε4 (MAF)</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Abbreviations: CAA-ICH = cerebral amyloid angiopathy–related intracerebral hemorrhage; GOCHA = Genetics Of Cerebral Hemorrhage on Anticoagulation; HTN-ICH = hypertension–related intracerebral hemorrhage; ICH = intracerebral hemorrhage; MAF = minor allele frequency.

*All variables are reported as sample size (percentage) unless otherwise specified.

b Defined as lobar ICH with diagnosis of definite/probable CAA according to the Boston criteria.1
95% confidence interval [CI] 1.19–2.17,

sizes confirmed that strength of association for

ble CAA according to the Boston criteria.1

vors (cumulative 2-year recurrence rate of 15.7% vs

rence was indeed more frequent in CAA-ICH survi-

Consistent with previous reports, hemorrhage recur-

recurrent CAA-ICH events and 6 HTN-ICH events.

During a median follow-up time of 34.3 months (in-

ICH and 114 with HTN-ICH) were eligible for

ICH recurrence: HTN-ICH

During a median follow-up time of 34.3 months (in-

ICH recurrence: HTN-ICH

DISCUSSION Results from our analyses demon-

neurology 78 January 31, 2012

Copyright © by AAN Enterprises, Inc. Unauthorized reproduction of this article is prohibited.
smaller effect sizes than those reported in the present study.

Of note, SNP rs6656401 shows significant stratification when different ethnic groups are compared; HapMap phase 3 data reports MAF > 20% for European populations, MAF ~10% for Mexican Americans, and MAF < 5% for Han Chinese, Chinese American, Japanese, Indian Gujarati, and African (Kenya) reference samples (www.hapmap.org). Future studies will therefore also require application of tools for control of bias due to genetic ancestry, and power calculations will have to be tailored to specific allele frequencies in the populations being investigated.

Winner’s curse adjusted effect size estimates for SNP rs6656401 in CAA are still larger than reported association results in recently published AD genome-wide studies. One potential explanation is that CRI genetic variation acts on AD and CAA through different pathologic mechanisms, in whole or in part. A more likely explanation is that the phenotypic CAA classification, provided by neuroimaging (using the Boston criteria) or pathologic data, has greater accuracy than the AD diagnosis, which relies solely on clinical data in many studies. Indeed, a recently published case-control association study of neuropathology-confirmed cases of AD re-

Table 3 Characteristics of ROS and MAP subjects

<table>
<thead>
<tr>
<th>CAA Severity</th>
<th>None to minimal (n = 146)</th>
<th>Mild to moderate (n = 280)</th>
<th>Moderate to very severe (n = 118)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographic variables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age at enrollment, y, mean (SD)</td>
<td>84.4 (7.2)</td>
<td>86.3 (7.1)</td>
<td>88.6 (6.9)</td>
</tr>
<tr>
<td>Gender, n (% female)</td>
<td>80 (55.0)</td>
<td>160 (57.0)</td>
<td>73 (62.0)</td>
</tr>
<tr>
<td>Pre-enrollment history of dementia, n (%)</td>
<td>33 (23.0)</td>
<td>122 (44.0)</td>
<td>74 (63.0)</td>
</tr>
<tr>
<td>Alzheimer disease pathology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neuritic plaques pathology score median (IQR)*</td>
<td>0.0 (0.0-0.00)</td>
<td>0.87 (0.54-1.11)</td>
<td>1.10 (0.88-1.31)</td>
</tr>
<tr>
<td>Diffuse plaques pathology score, median (IQR)*</td>
<td>0.0 (0.0-0.23)</td>
<td>0.84 (0.51-1.17)</td>
<td>1.02 (0.78-1.30)</td>
</tr>
<tr>
<td>Genetic variables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs6656401 (A allele, MAF)</td>
<td>0.18</td>
<td>0.21</td>
<td>0.23</td>
</tr>
<tr>
<td>APOE ε2 (MAF)</td>
<td>0.13</td>
<td>0.07</td>
<td>0.04</td>
</tr>
<tr>
<td>APOE ε4 (MAF)</td>
<td>0.06</td>
<td>0.15</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Abbreviations: CAA = cerebral amyloid angiopathy; IQR = interquartile range; MAF = minor allele frequency; MAP = Rush Memory and Aging Project; ROS = Religious Order Study.

* Calculated for each pathology feature by dividing each person’s count by the SD for that particular count to standardize individual subjects’ values.
ported larger effect sizes than those observed in discovery analyses. These pathology-informed AD studies uncovered effect sizes for SNP rs6656401 in the range we observed for CAA, rather than the smaller estimates generated in studies of clinically diagnosed AD.32

The association between rs6656401 and CAA-ICH risk and recurrence is potentially confounded by the genetic effects this variant exerts on parenchymal amyloid burden, which in turn correlates with CAA severity.18,20 However, we found a significant association between rs6656401 and increasing severity of vascular amyloid deposition in autopsy samples from initially healthy community-dwelling elderly subjects. Adjustment for AD pathology in these analyses did not cancel the observed effect, suggesting that, despite the correlation between parenchymal and vascular amyloid burden,20 \textit{CR1} probably acts independently on both processes, thus increasing the risk of both AD and CAA. This finding echoes evidence from genetic association studies of \textit{APOE}, in which the $e2$ allele decreases AD risk but increases risk of CAA.12,34 Taken together, evidence from genetic association studies is consistent with multiple experimental observations in suggesting that, although etiologically related, AD and CAA represent different pathologic and clinical conditions.

Our study is limited by the challenges of assembling adequate sample sizes in diverse populations for a genetic study of CAA. We present 3 independent analyses that provide biologically consistent results, but we are not able to provide independent replication at this time. Adequate samples for replication are limited, although ongoing efforts in the international community are likely to generate such samples in the future. None of the reported associations achieve genome-wide significance ($p < 0.5 \times 10^{-8}$), which would improve the robustness of our findings. However, a large body of preexisting data in AD genetics suggests that our findings are consistent with the known or suspected biologic functions of the \textit{CR1} gene product. Finally, because of the restrictions imposed by genotyping procedures and study design, we are not able to extend our findings to non-European ancestry populations at this time. Additional studies will be required to clarify the role of \textit{CR1} in these populations.

\section*{AUTHOR CONTRIBUTIONS}

Study concept: Dr. Biffi, Dr. Rosand. Study design: Dr. Biffi, Dr. Rosand. Acquisition of data: Dr. Biffi, Dr. Shulman, Dr. Jagiella, L. Cortellini, A.M. Ayres, K. Schwab, Dr. Brown, Dr. Silliman, Dr. Selim, Dr. Worrall, Dr. Meschia, Dr. Slowik, Dr. De Jager, Dr. Greenberg, Dr. Schneider, Dr. Bennett, Dr. Rosand. Statistical analysis: Dr. Biffi. Manuscript preparation: Dr. Biffi, Dr. Rosand. Manuscript review: Dr. Biffi, Dr. Shulman, Dr. Jagiella, L. Cortellini, A.M. Ayres, K. Schwab, Dr. Brown, Dr. Silliman, Dr. Selim, Dr. Worrall, Dr. Meschia, Dr. Slowik, Dr. De Jager, Dr. Greenberg, Dr. Schneider, Dr. Bennett, Dr. Rosand.

\section*{ACKNOWLEDGMENT}

The authors thank the participants in the GOCHA study, the ROS, and the MAP, all research staff at GOCHA participating institutions, the Rush Alzheimer’s Disease Center, and the Broad Institute.

\section*{STUDY FUNDING}

The GOCHA study was supported by the Edward and Maybeth Sonn Research Fund, the University of Michigan General Clinical Research Center (M01-RR00042), the National Institute for Neurologic Disorders and Stroke (R01-NS063925, R01-NS059727, P50-NS051343, K23-NS064052, and K23-NS059774) and the National Institute on Aging (R01-AG026484). Dr. Biffi received support from the American Heart Association/Bugher Foundation Centers for Stroke Prevention Research (077501N, 0755984T). The ROS and MAP studies are supported by NIH grants (R01-AG031046, R01-AG179917, R01-AG158819, P30-AG10161, and K08-AG0344290).

\section*{DISCLOSURE}

Dr. Biffi receives research support from the American Heart Association Bugher Foundation. Dr. Shulman receives research support from the NIH/NIA, the Clinical Investigator Training Program: Beth Israel Deaconess Medical Center and Harvard/MIT Health Sciences and Technology, in collaboration with Pfizer Inc and Merck & Co., Inc., Parkinson’s Study Group, Harvard NeuroDiscovery Center/Massachusetts Alzheimer’s Disease Research Center, and Burroughs Wellcome Fund, Career Award for Medical Scientists. Dr. Jagiella reports no disclosures. L. Cortellini receives research support from the NIH/NINDS. A.M. Ayres receives research support from the NIH. K. Schwab receives research support from the NIH (NINDS, NIA). Dr. Brown serves on the editorial board of \textit{Neurology}©, is supported by an NINDS Career Development Award (K23 NS051202); and has received research support from CVR Global, Inc., the University of Michigan, Michigan Department of Community Health, Blue Cross Blue Shield of Michigan Foundation, the Diocese of Corpus Christi, and the NIH. Dr. Brown has received speaker honoraria from the Hazel K. Goddess Fund for Stroke Research in Women and receives research support from the NIH (NINDS, NHLBI). Dr. Silliman serves on the speakers’ bureau for and has received speaker honoraria from Biogen Idec and has received research support from Biogen Idec, Novartis, Genzyme Corporation, Schering-Plough Corp., and the NIH/NINDS. Dr. Selim serves on scientific advisory boards for Mitsubishi Tanabe Pharma Corporation and Avanir Pharmaceuticals; serves as Controversies Section Co-editor for \textit{Stroke}; receives publishing royalties for \textit{The Stroke Book} (Cambridge University Press, 2007) and \textit{Neurology Emergencies} (Oxford University Press, 2011); and receives research support from the NIH. Dr. Worrall serves as an Associate Editor of \textit{Neurology}© and on the editorial board of \textit{Seminars in Neurology}, receives royalties from the publication of \textit{Merritt’s Neurology}, 10th, 11th, and 12th eds. (chapter author); and receives/has received research support from the NIH (NHGRI, NHLBI, NINDS) and the University of Virginia–CTSA Pilot Project. Dr. De Jager serves on the editorial board of \textit{Stroke} and the \textit{Journal of Stroke and Cerebrovascular Diseases} and receives research support from the NIH/NINDS. Dr. Slowik reports no disclosures. Dr. De Jager has served on scientific advisory boards for Teva Pharmaceutical Industries Ltd. and Biogen Idec; has received speaker honoraria from Biogen Idec; serves on the editorial board of \textit{Journal of Neuroimmunology} and receives research support from Biogen Idec and the NIH. Dr. Greenberg serves on a data safety monitoring board for Teva Pharmaceutical Industries Ltd. and Biogen Idec; has received speaker honoraria from Esteve, Medtronic, Inc., and Pfizer Inc; serves on the editorial boards of \textit{Neurology}, \textit{Stroke}, \textit{Cerebrovascular Disease}, and the \textit{Journal of Alzheimer’s Disease and Other Dementias}; has served as a consultant for Roche, Janssen Alzheimer Immunotherapy, and Bristol-Myers Squibb; and has received/receives research support from the NIH and the Alzheimer’s Association. Dr. Schneider served on a scientific advisory board for GE Healthcare; serves as Monitoring Editor for the FIGURE 1

\section*{STUDY CONCEPTS}

Dr. Biffi, Dr. Rosand.
REFERENCES

